
• Key components: solar panel (power supply), automated buck converter (power converter), comparator, and
supercapacitor (energy storage)

• Solar panel must supply minimum 8.7V to account for 5V delivered to Raspberry Pi, plus voltage drop across buck
converter and diode but can supply up to 20V during open circuit
o Must be able to supply at least 2A of current to support Raspberry Pi start-up

▪ Maximum current (short circuit current) 3.2A to allow for internal resistance and suboptimal weather
o Additional capacity allows 8.7V to be delivered on a cloudy day/suboptimal conditions

• Buck converter needed to step down the voltage so the Raspberry Pi is not damaged by excess current and voltage
• Supercapacitor supplies power to Raspberry Pi during shutdown to mitigate packet loss when solar panel voltage drops

below 8.7V instantaneously
• Op-amp used as a comparator to determine when buck converter output

crashes and drops below 5V

Approach

Objective

Problem

Acknowledgements

Future Work

Results & Conclusion

Video
In the last 20 years, large data centers have
sprouted across Northern Virginia, requiring
significantly more power than what was
intended for the region and drawing a constant
load from the grid. Utilities, such as Dominion
Energy, must build high voltage power lines,
requiring large amounts of copper, which are
expensive to construct and maintain, in order to
provide sufficient power to these centers.

Implementation - Hardware

Create a collection of distributed solar powered
computing nodes with a human machine
interface to allow persistent operations
regardless of the conditions at each node. The
system should be fault tolerant on a dedicated
wired network, with each node capable of
energy storage.

A model was designed and constructed to
represent the system above as a proof of
concept. Five nodes, each consisting of a
Raspberry Pi and power supply circuit, represent
data centers across the world. The power
requirements for each node are met by a solar
panel, converter and capacitor. In terms of
software, a state machine was developed to
handle communication, running a job, and
monitoring progress through a terminal
program.

Power Adaptive Dynamic Compute Nodes
Dave Anderson, Andrew Beauchemin, Boyan Pan, Ken Torres, Shannon Woolfolk

Customer: Matt Gardner and Dr. Jaime De La Ree Lopez, Dominion Energy
SME: Dr. Jaime De La Ree Lopez, Dominion Energy

Mentor: Dr. Scot Ransbottom

• Overarching node software is controlled by a state machine that changes state based on status of surrounding nodes or
available power.
o Transitions between states dependent on power availability and state of adjacent nodes
o Four states (idle, operate, data send, and stop) allows the node to sufficiently accommodate most scenarios

• Each node connects to directly connects to adjacent nodes via TCP
• The job class defines an interface that can be used to instance other job types. This interface allows the state machine to

easily collect, transmit, receive, and update a running predefined job.
o Our initial job was designed to run algorithms that had many repeated tasks accumulated at the end.
o The algorithm we used was the Monte Carlo algorithm for calculating pi.

• All software was written in C++ and compiled with g++ on Raspberry Pi OS. The only non-standard library used was
WiringPI (Which only became unsupported in the middle of our project)

• Nodes are able to successfully operate on 
solar power

• ~30 seconds of recorded shutdown time 
sufficiently allows the node to transmit 
relevant job data to adjacent nodes

• Nodes are able to accumulate work done 
on a job and fold that into their own work

• Program can successfully operate on one 
node, and as many as 5 nodes, at any 
given time

• Handle creation and transmission of generic
process state.

• Incorporate higher capacity energy storage

Implementation - Software

Thank you to:
• Dr. Jaime De La Ree Lopez for his guidance
• Dr. Virgilio Centeno his support
• Dr. Matt Gardner for his financial support
• Dr. Scot Ransbottom


